How can we build more effective weather visualizations?

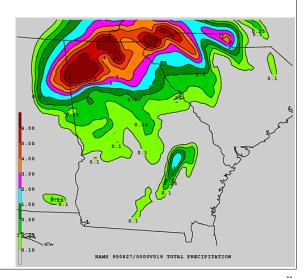
Task-Specific Visualization Design

Lloyd Treinish IBM Thomas J. Watson Research Center Yorktown Heights, NY

lloydt@us.ibm.com

http://www.research.ibm.com/people/1/lloydt
 http://www.research.ibm.com/weather

What's Wrong with Our Visualizations? There is a lot that's right, but we can do better.


- Generic methods (content and interface) often fail in operational environments
 - Lack of focus for specific forecasting tasks
 - -Complexity and time-consuming in use and/or training
- Focused methods may also fail
 - Not necessarily a reflection on quality of system
 - Mismatch between design focus and user goals
 - -Users may not be researchers or professional meteorologists
- Generic methods may be preferred for research
 - Need for flexibility and customization
 - Multiple user goals and visualization tasks

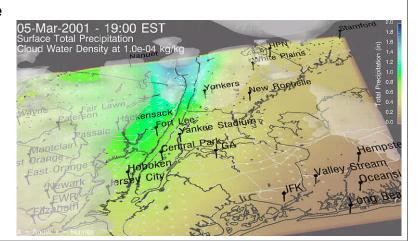
How Should We Start?

- 1. Identification of user needs, goals and tasks
 - Assume user (intelligence) in the loop (domain knowledge)
 - Recognize distinction between requirements in research vs. operational environments
 - Build a taxonomy of visualization tasks and user goals
- 2. Composition of design elements and interface actions
 - Reflect user goals vs. visualization tasks
 - -Incorporate knowledge of human perception (pattern recognition)
 - Be consistent with data sources
 - -Constrain choices matched to user goals
- Practical Matters
 - Share common design elements to reduce development and training costs
 - -Minimize iterative refinement with users
 - Need different visualizations for the same users
 - Need different visualizations for different users

Current Operational 2D Visualization

- Static, batch, typically non-interactive
- Two-dimensional techniques with 2-3 variables at most for limited 2d or 2d slices of limited 3d data
- Flip-book animation and indirect interaction at best
- Single design/interface
- Many examples
 - ► GEMPAK, AWIPS, MetView, HORACE, GrADS, NCAR Graphics, VAN, ...
- Methods do not scale to large data volumes
 - ► Observations, analyses and models
- Poorly matched for non-analysis tasks and non-meteorologist users

Visualization Tasks in Meteorology


- Class I: 2d (Traditional Weather Graphics)
 - Quantitative
 - Users are forecasters
 - Minimal indirect interaction
- Class II: 2d, 2-1/2d Analysis (new)
 - Quantitative with potentially complex appearance
 - -Users are forecasters, but techniques will be new
 - Support data comparison
 - Direct manipulation important
- Class III: 3d Browse (new)
 - Qualitative with simplified appearance (not necessarily content)
 - Users may or may not be specialists (e.g., forecasters & public)
 - Animation with temporal and spatial coherence important
 - Event identification for potential later analysis

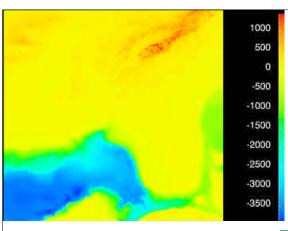
Visualization Tasks in Meteorology (Continued)

- Class IV: 3d Analysis (not new, but extended herein)
 - Quantitative with potentially complex appearance
 - Users are forecasters, but techniques will be new
 - Support limited data comparison
 - Direct manipulation important
- Class V: Decision Support (not new, but extended herein)
 - Rapid assessment important
 - Users are not modellers and typically not meteorologists
 - -Inherent support for data fusion
 - Weather phenomena may not be shown

Composition Design Approach

- Identification of distinct user & visualization tasks by same or different users
- Detailed content under user control
- Consistency with data source
- Each data set processed independently
- Visualization and interaction in common, cartographic coordinates
- Both quantitative and qualitative techniques supported
- Multiple, linked displays, static and/or dynamic
- Physical and conceptual realization
- Simplified user interface

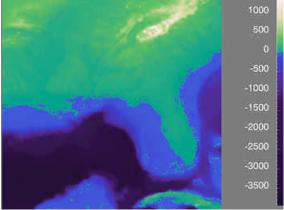
A Few Compositional Guidelines


- Coordinate system for display and interaction
 - Cartographic projection (horizontal coordinates) dictated by task and/or data
 - Vertical coordinates (terrain-following vs. isobaric) dictated by task (assessment vs. analysis)

Color

- Colormaps dictated by task (isomorphic vs. segmented) and data (low vs. high spatial frequency, moisture vs. generic)
- Perceptual rules used for design/selection
- Individual color(map)s selected to minimize color mixing artifacts
- -Luminance and opacity used for direct volume rendering
- Opacity mapping with constant color used for surface extraction

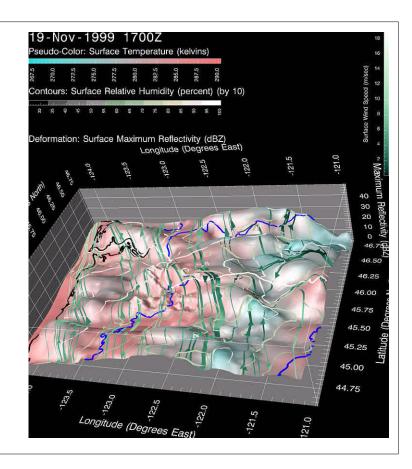
User tasks drive design

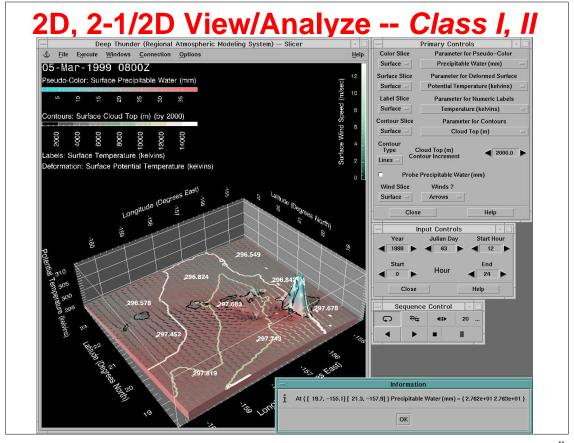

- -Assessment: surface conditions and cloud properties
- Analysis: variable selection and technique selection
- Decision support: impact of weather

An Example of the Colormap Problem:

Which Picture is Better?

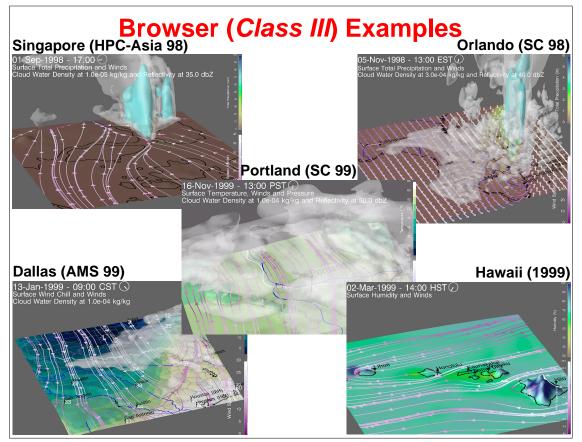
- Visualizations can be easily created today, but process is largely ad hoc
- How data are represented clearly affects interpretation
- Choosing effective strategies implies navigation through a complex design space
- Perceptual rules enable better, faster representations

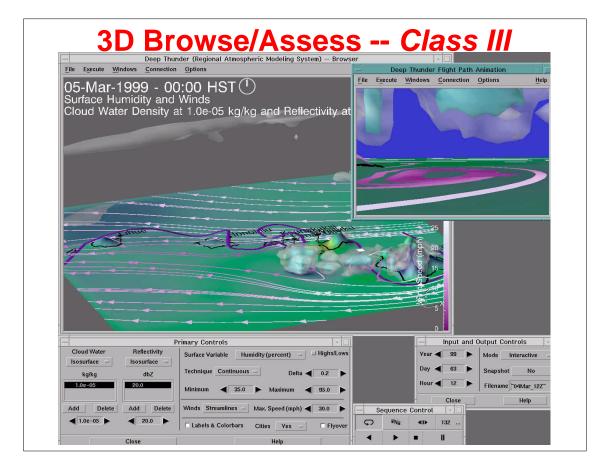

2, 2-1/2D Slice Analysis/View Task Class II


- Quantitative, interrogation and comparison
- Interaction by forecasters for analysis
- Direct manipulation supported
- Select different variables at specific pressure levels or at surface for use with diverse visualization methods (up to 5)
- Time-based animation
- Superset of Class I
 - Can utilize modern hardware (e.g., parallelism, 3d graphics)

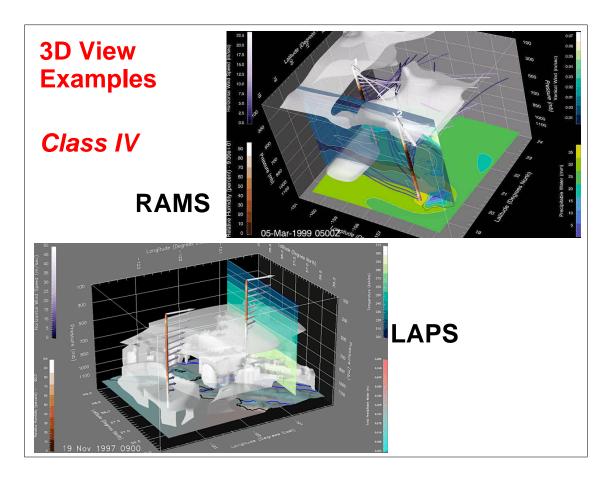
2-1/2D Slice Example

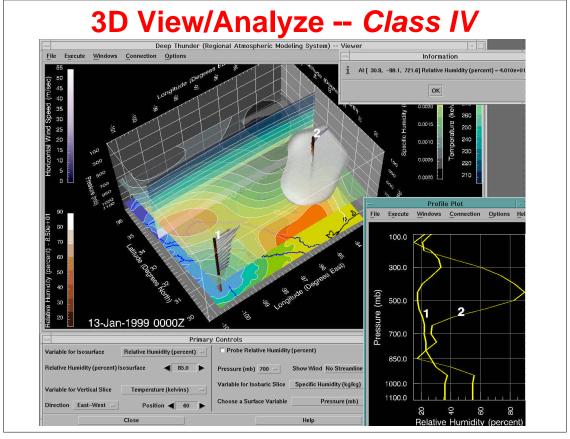
Class II

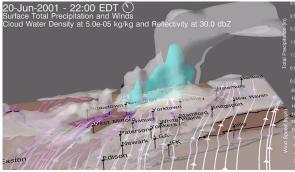

RAMS

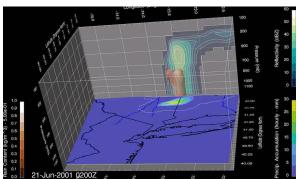


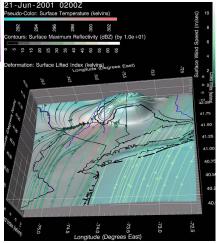
Browse Task -- Class III


- Abstraction of results into single, easy-to-interpret, qualitative 4D product
 - -Effective for data assessment and forecasting
 - -Eliminate need to evaluate numerous 2d plots
 - -Enables conceptual model for forecast development
 - -Interact with and examine data with simple presentation
 - subset of variables for these tasks at high temporal resolution matching model
- Simple model tracking during execution
 - Quality control
 - Limited immediate analysis
 - Event identification for later analysis
- Forecasters and public products (media & www)
 - Users may or may not be specialists (e.g., forecasters)
 - Time-based animation with fixed view
 - Key-frame animation at fixed time
 - Creation of interactive and static "snapshots" for www

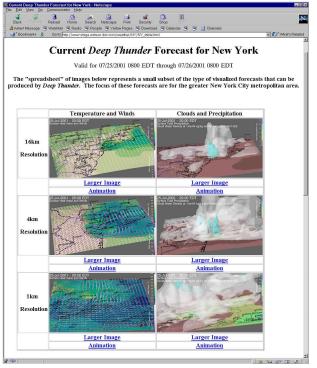



3D Analysis/View Task -- Class IV


- Quantitative and interrogation
- Interaction by forecasters for analysis
- Limited data comparison
- Select different variables for use with diverse visualization methods (up to 5)
- Typical post-processed (model or analysis) data (e.g., all variables every hour of forecast time)
- Time-based animation
- Interaction with "virtual atmosphere": virtual met-station

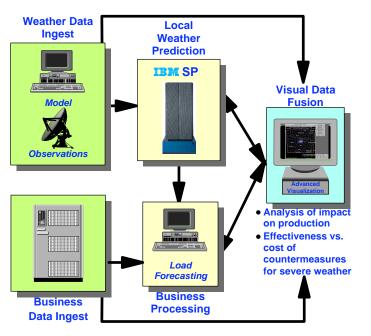


Deep Thunder New York City Pilot

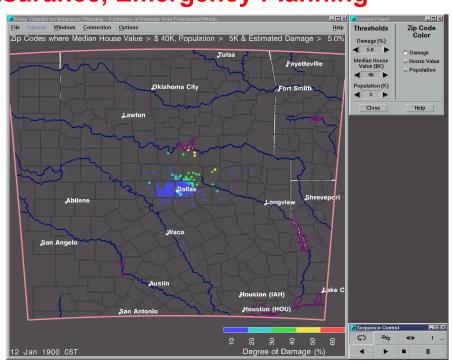


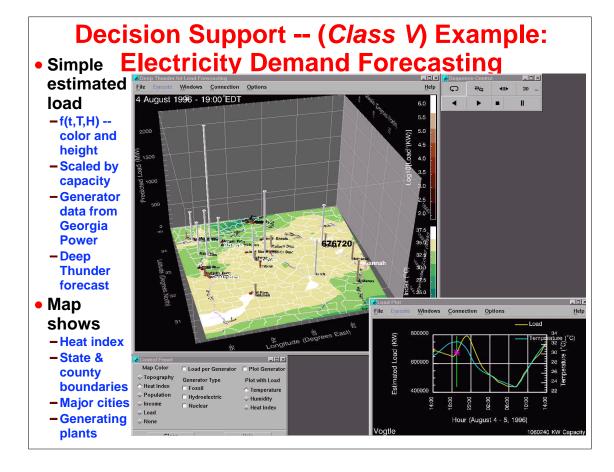
- 1-2 day forecast, nested to 1 km resolution for metropolitan area, 1-4 times/day
- Operational end-to-end infrastructure and automation (data ingest, pre-processing, simulation, post-processing, visualization, dissemination)
- Testbed for continued work in visualization and applications
- Operational implementation of Classes
 I, II, III and IV
- Extension of Class III for www

Extensions of Class III for WWW


- Typical web-based methods do not scale well -- many mismatches, for example
 - -too few time steps
 - -too hard to find relevant images
 - -limited or no interactivity
- Interactive, 3d image spreadsheet -- high-level
 - Meteorological characteristics vs. model features -meta-representation of model
 - Each interactive cell is one time step as an index into more visualizations and interactions -extensible
 - MPEG video at moderate pixel-resolution, but high temporal resolution
 - Specialized (extreme) compression to address data sampling problem
- Interactive applications adapted for automated and parallelized batch execution to generate images & animations

Decision Support -- Class V


- Enable proactive decision making affected by weather
- User goals influence effective design via data fusion
- Customized appearance by data and geography
- Presentation of derived properties critical
- Many potential applications
- Couple to business processes & models:


Load forecasting, groundwater modelling, ...

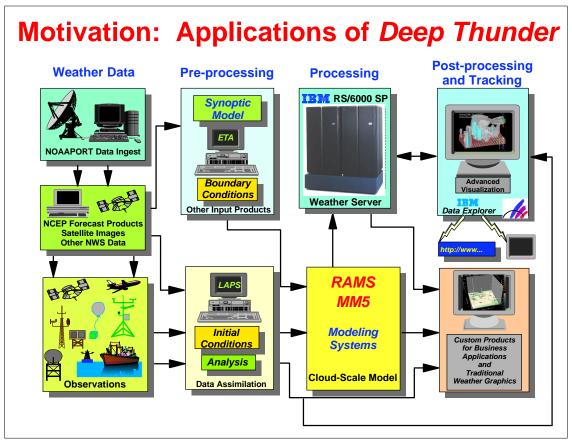
Decision Support -- (*Class V*) Example: Insurance, Emergency Planning

- Geographic correlation of demographic and forecast data
- Map shows
 - Zip code locations colored by wind-induced residential building damage
 - Constrained by value, population and wind damage above thresholds

Visualization Implementation

- Core implemented via Data Explorer -- an open source visualization toolkit (www.opendx.org)
 - Custom tools for new visualization elements and derived meteorological variables
 - Custom tools/packaging for new output products
 - -Shared tools and user interface components
 - Simple motif widgets for indirect interaction
 - Direct interaction in appropriate cartographic coordinates
 - NO transformation or compression of data or mesh(es)
 - -Rule-based colormap tool used during design phase
 - -Custom export/rendering www products
- Integrated with mesoscale forecasting system (Deep Thunder)
 - Custom I/O to balance communications, reduce latency
 - -Custom filters for data import
- Supplemented with utilities for animation conversion (e.g., video, www) built upon ImageMagick

Conclusions


- Hierarchical decomposition of user goals and visualization tasks and design useful
- Avoid "kitchen sink" approach: Do NOT support too many tasks and users in one application
- No single visualization is typically adequate for a given user goal
- Same users may have different goals
- Although different users may have not have the same goals, they may share visualization tasks (and be able to utilize common tools)
- Operational activities expand the potential tasks from the traditional scientific visualization ones

Future Work

- Develop task decomposition for other applications and implement customized interfaces, products and packaging
 - For example, aviation, broadcast, insurance, energy, agriculture
- Continue to develop specialized compression techniques for web deployment
- Extend tools to other models and data products and evaluate validity of decomposition
- Enhance model tracking/steering and interactivity (Class III)
- Improve model input/output (all classes)
- Incorporate new visualization techniques

Backup

Slides

Visualization in Meteorology

 Visualization in meteorology has rich tradition and history

Research community among earliest users of both modern visualization techniques and supercomputing (e.g., Wilhelmson et al, NCSA thunderstorm)

- Plethora of operational 2d tools with essentially same content design
 - Typical focus on analysis
 - ► Philosophy of "one size fits all", independent of user or task
 - ► 2d techniques dominate
 - ► Limited use of 3d mostly for post-processing
 - Potential mismatch between users and interface
- Good choice as a testbed

Related 3D Work in Operational Meteorology (Derived from the Research Community)

- U. Wisconsin Vis-5D
 - -Single design/interface for limited 3d data only, users & tasks
 - -Home-grown (X/OpenGL), public domain
 - -Optimized for performance on regular grids, compressed data
 - -Assumption of an analysis task
- NOAA/Forecast Systems Laboratory D3D
 - -Single design/interface for limited 3d data only, users & tasks
 - -Originally utilized AVS, but now based upon Vis-5D
 - -Assumption of an analysis task
 - -Focus on user interface consistent with other applications
- Fraunhofer Institut f
 ür Graphische Datenverarbeitung (with Deutscher Wetterdientst)
 - -Different systems and interfaces for different tasks AND users
 - Only share underlying renderer
 - -Triton: 2d data for non-meteorologist
 - -TriVis: 2d and 3d data for non-meteorologist via broadcast meteorologist
 - -RASSIN: 3d analysis by meteorologist

Common Goals of Visualization

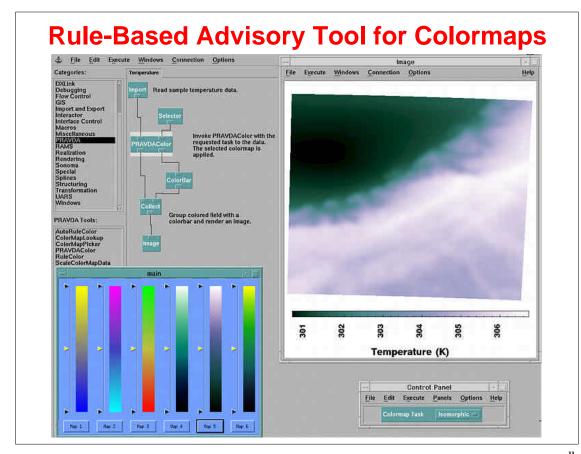
- Exploration (undirected search)
 - -See relationships, test hypotheses
 - You don't know what you are looking for
- Analysis (directed search)
 - Gain insight to make decisions
 - You already have a sense of what you are trying to learn
- Communication (presentation)
 - -Share results, convince, and promote
 - You already know the answer

"you can see a lot by observing" (Yogi Berra)

Stages of User-Centric Software Development

- Define the application in terms of its users, their goals and tasks
- Design the application and its interface to implement that definition
- Prototype the design
- Test the design with users to identify design flaws that prevent users from achieving their goals
- Fix the design flaws, then redesign, reprototype, and retest until an acceptable usability level is achieved
- Develop the application, do final testing and test the support documentation
- Deliver the final application and assess the design's success in field use

Compositional Guidelines


(Task and User Metadata)

Coordinate system for display and interaction

- Cartographic projection (horizontal coordinates) dictated by task and/or data
- Vertical coordinates (terrain-following vs. isobaric) dictated by task (assessment vs. analysis)

Color

- Colormaps dictated by task (isomorphic vs. segmented) and data (low vs. high spatial frequency, moisture vs. generic)
- Perceptual rules used for design/selection
- Individual color(map)s selected to minimize color mixing artifacts
- Luminance and opacity used for direct volume rendering
- Opacity mapping with constant color used for surface extraction

Compositional Guidelines (continued)

Realization

- -Surface data warped on terrain in 3d scene
- -Overlay of vector maps and markers for annotation
- -Color-filled contour banding used with segmented colormap
- -Surface wind dictated by task
 - ► Fixed glyphs (2d arrows, 3d flags) as animated texture for global features
 - Streamlines with directional arrows for boundary (e.g., fronts, convergence zone) evolution
- Virtual met station for 3d analysis/interrogation tasks
- Multiple encodings for analysis/comparison tasks

User tasks

- Assessment: surface conditions and cloud properties
- Analysis: variable selection and technique selection

Browse Task (Class III Continued)

Event/Feature identification

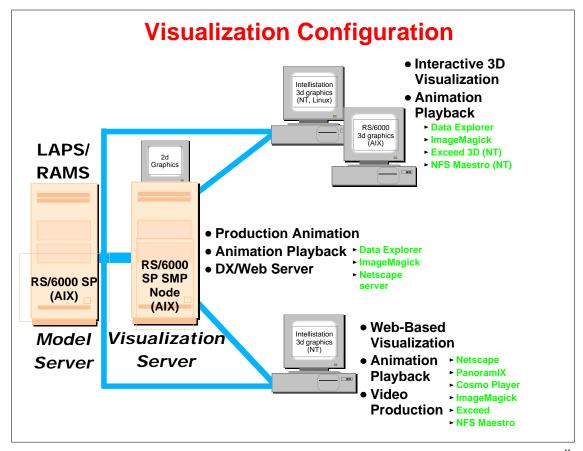
- -Gross atmospheric motion
- Convective activity
- -Potential distribution of motion
- -Land-sea interaction
 - sea breezes
 - convergence zones
- Orographic effects
- -Vertical Motion

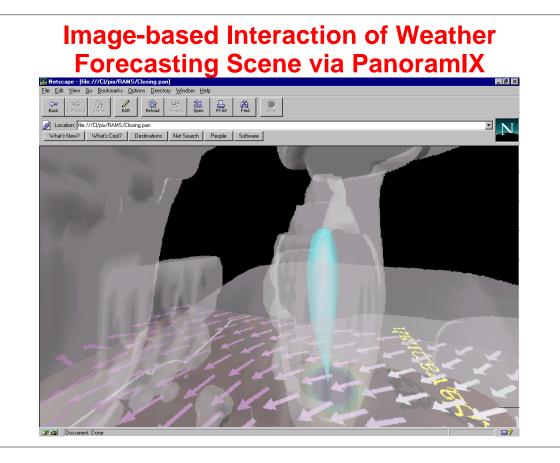
Visualization subtasks: continuous domain vs. segmentation

- -Volume rendering vs. isosurface(s) for cloud properties
- Isomorphic colormap vs. contour banding with segmented colormap for surface data
- -Streamlines vs. glyph techniques for surface winds
- -Animation with temporal and spatial coherence important

Data Explorer - http://www.opendx.org Six main modular software Open source development components as client-server Multi-platform support providing -Unix: IBM, HP, Sun, SGI, DEC, Linux, etc. -API and turnkey development -Wintel: 95, 98, NT and 2000 -Visualization authoring -Links to other applications Single unified data model for -End-user tool all data types Client (user interface) on same -Handles all data (imported & derived) or different machines -Supports building of applications and exchange of data Server (compute engine) Promotes efficiency -parallelized on SMPs -Self-describing and user-extensible -distributed on networks -multi-threaded **Run Time** client V.P.E. **API DX Link** UI

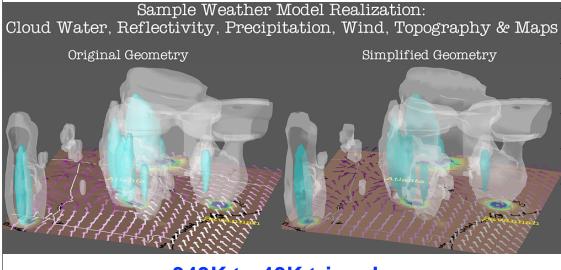
Visual Pgm

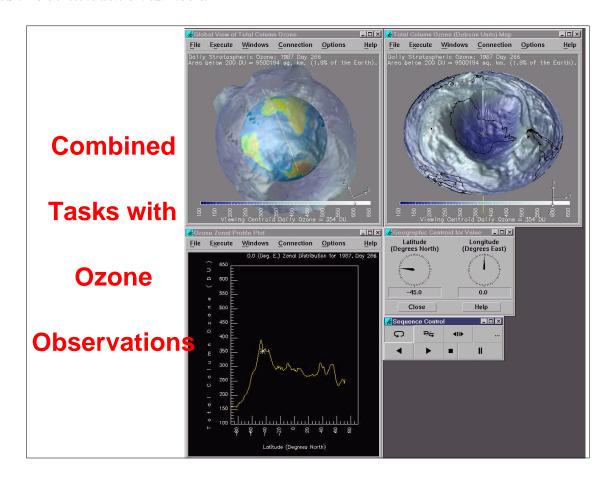

server


DX Virtual Machine

(interpreter)

A.P.I.


CORE: Data Model + Modules



- Reduce download time and improve interactivity
- Each component of the visualization is separately simplified with different constraints

Weather-Specific Conclusions

- Class III more effective than expected for general forecasting tasks
 - Quick and accurate model assessment via compact representation, supporting conceptual and physical models
 - Eliminates need for tedious use of 2d methods
- Class II and IV:
 - Efficient approach to correlative analysis
 - -Direct manipulation enables more than just display
- Limitations in data management
 - Data processing and model I/O poorly designed for interactive applications -- both direct or post-processing
 - Incomplete metadata management, primarily impacting Class II and IV applications